Visualization of the self-assembly of silica nanochannels reveals growth mechanism.
نویسندگان
چکیده
Self-assembled mesoporous structures with well-ordered nanoscale channels could be used in applications such as molecular separation, nano-optics, molecular electronics, nanomedicine and catalysis. However, the domain sizes that can be created in such systems are limited by our lack of a detailed understanding of the relevant growth processes. Here we report the real-time observation of domain growth in the self-assembly of silica nanochannels using fluorescence polarization imaging and atomic force microscopy. We show that transient lamellar structures precede the formation of hexagonal layers, and that the layer growth follows two distinct pathways. In addition, the domains are grown on a mesoporous film substrate, which acts as a sieve and allows control of the delivery of the reactive species. We use these insights and capabilities to grow layers of well-ordered silica nanochannels with domain sizes of up to ∼0.3 mm.
منابع مشابه
A water-soluble hexa-peri-hexabenzocoronene: synthesis, self-assembly and role as template for porous silica with aligned nanochannels.
A water-soluble hexa-peri-hexabenzocoronene was prepared and shown to undergo ordered columnar self-assembly either in water solution or bulk and therefore served as template for the fabrication of porous silica with aligned nanochannels.
متن کاملEvaporation Induced Self-Assembly Method for Mesoporous Silica Thin Films Synthesis: Mechanism, Affecting Parameters and Capabilities
This article has no abstract.
متن کاملFabrication of enclosed nanochannels using silica nanoparticles
We report a simple and inexpensive approach to the fabrication of enclosed nanoscale channels composed of silica nanoparticles on planar Si surfaces using interferometric lithography to define the long-range pattern in a photoresist film followed by spin-coating self-assembly of colloidal silica nanoparticles and high-temperature calcination to remove the photoresist leaving open nanochannels. ...
متن کاملStudy of Cis–trans Isomerization Mechanism of [3-(3-Aminomethyl) Phenylazo] Phenyl Acetic Acid as a Causative Role in Alzheimer Using Density Functional Theory
Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the se...
متن کاملStudy of Cis–trans Isomerization Mechanism of [3-(3-Aminomethyl) Phenylazo] Phenyl Acetic Acid as a Causative Role in Alzheimer Using Density Functional Theory
Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature nanotechnology
دوره 6 2 شماره
صفحات -
تاریخ انتشار 2011